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In a system where a free fluid flow is coupled to flow in a porous medium, different PDEs
are solved simultaneously in two subdomains. We consider steady Stokes equations in the
free region, coupled across a fixed interface to Darcy equations in the porous substrate.
Recently, the numerical solution of this system was obtained using the boundary integral
formulation combined with a regularization-correction procedure. The correction process
also results in the improvement of the condition number of the linear system. In this paper,
an appropriate preconditioner based on the singular part of corrections is introduced to
improve the convergence of a Krylov subspace method applied to solve the integral
formulation.

Published by Elsevier Inc.
1. Introduction

We are interested in problems where a domain filled with fluid is separated by an interface from a porous medium filled
with the same fluid. Systems like this have many important industrial applications [5,27,29]. We model the free fluid flow by
the incompressible Stokes equations, and the flow in the porous medium by Darcy equations. The partial differential equa-
tions then have different orders in two subdomains and the coupling conditions at the interface have been investigated in
various works [6,31,20,21,32]. Among these conditions are the continuity of normal components of velocity and normal
stress, and the slip condition for the tangential velocity proposed by Beavers and Joseph [6]. Various numerical methods have
been developed to solve this kind of problem (see, for instance [7,11,12,14,17,23–25,34]). In [34], a boundary integral for-
mulation obtained using the free-space Green’s function was used to represent solutions of both equations. Common advan-
tages of this approach include reduction in the dimensionality of the problem and accuracy of solution. The boundary was
represented as a distribution of singularities with strengths to be determined from the boundary and interface conditions. In
addition, the authors in [34] applied a regularization-correction procedure to eliminate the singularities in the kernels and
enhance the accuracy of the final solution. The resulting linear system was then solved by means of a Krylov subspace meth-
od (GMRES). This paper is devoted to the improvement of convergence of this method by using an appropriate
preconditioner.

To eliminate the singularities that appear in the integral formulation, we regularize the kernels by approximating the del-
ta function with a smooth radially symmetric function [9,34]. Then, a standard quadrature can be used to discretize this for-
mulation. Numerical results have demonstrated that this technique results in low accuracy of the solution. As it was done in
[34], we use the correction method to reduce the dependence of the numerical error on regularization. These corrections are
based on the error due to regularization computed approximately near the singularity point. Precisely, it is defined as the
difference between the original integral equations (singular kernels) and the ones with regularized kernels. The resulting
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integral representations for the fluid quantities are substituted into the boundary and interface conditions. The final integral
equation system is then solved using a Krylov subspace method (GMRES) for the unknown force densities on the boundary.
Initial observations showed that correction terms designed primarily to improve the accuracy of solution significantly reduce
the condition numbers of the matrix. This also results in faster convergence rates using a Krylov subspace method, as some
numerical tests illustrate in this paper.

The subject of present investigation concerns the improvement of the Krylov subspace method applied to the coupled
Stokes–Darcy integral formulation. Indeed, the resulting linear system is non-symmetric and composed of dense blocks.
Although the correction procedure considerably reduces the condition number, this linear system remains ill-conditioned,
and its eigenvalues are largely clustered near zero. In addition to these disadvantages, the condition number increases with
the number of grid points and the iterative method depends on the physical parameters, like fluid viscosity and permeability
of the porous medium. The concept of the preconditioner introduced in this paper is based on the observation described
above regarding the reduction of condition numbers when corrections are added. The technique consists of first introducing
a matrix with a similar block structure as the Stokes–Darcy system. Then, for each block in this initial system we compute,
using the singular part of corrections, the corresponding block in the new matrix. Its inverse finally defines our pecondition-
er, which can be solved efficiently since it has a small bandwidth. Indeed, the blocks of this matrix are either diagonal or have
only a few non-zero off-diagonal elements. This strategy also suggests the possibility of using this type of preconditioner for
problems where the solution can be expressed with similar Green’s functions. We first present numerical results validating
our approach for a Stokes flow problem. Then, we show numerical simulations corresponding to the Stokes–Darcy formula-
tion, where significant improvement of GMRES using this preconditioner is demonstrated.

The paper is organized as follows. After the presentation of the model problem in Section 2, we describe the integral for-
mulation and the regularization-correction technique in Section 3. In Section 4, we introduce the preconditioner, its deriva-
tion and overall structure. Finally, several numerical experiments validating our approach are presented in Section 5. Section
6 is reserved for conclusions.

2. Problem formulation

In situations where inertia has a negligible effect, the flow is modeled by the linear Stokes equations. In the porous sub-
strate, we use Darcy’s law which is a linear relationship between the driving pressure gradient and the filtration velocity. In
two dimensions, we denote the Stokes domain by XS and the Darcy one by XD (Fig. 1). We assume bounded domains with
smooth boundaries denoted by @XS ¼ CS [ R and @XD ¼ CD [ R, where R is the common interface. The steady state equations
are therefore given as follows:
InXS :
�rpS þ lDuS þ FS ¼ 0;
r � uS ¼ 0;

�
ð1Þ
where l is the fluid dynamic viscosity, pS is the pressure, uS ¼ ðuS;vSÞ is the velocity vector, FS is external force, and
InXD :
�rpD � lK�1uD þ GD ¼ 0;
r � uD ¼ 0;

(
ð2Þ
where uD ¼ ðuD;vDÞ and pD are, respectively the (averaged) fluid velocity and the hydrostatic pressure, GD is force, and K is
the permeability of the porous medium. We will assume that the medium is isotropic, K ¼ kI. Finally, we assume the follow-
ing boundary conditions:
Fig. 1. Schematic of the problem.
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uS ¼ u0 on CS; ð3Þ
pD ¼ p0 on CD; ð4Þ
and on R
uS � nS ¼ �uD � nD; ð5Þ
pS � 2lnS � DS � nS ¼ pD; ð6Þ
@uðsÞS

@nS
¼ cffiffiffi

k
p uðsÞS : ð7Þ
Here c is a dimensionless slip coefficient that depends on the geometry of the porous medium, DS ¼ 1
2 ½ruS þ ðruSÞT � is the

Stokes deformation tensor, uðsÞ is the tangential velocity, and nS (respectively, nD) is the unit normal vector that points out of
the region XDðrespectively XSÞ, so that nD ¼ �nS on R. Eqs. (5) and (6) represent continuity of normal component of velocity
and normal component of normal stress, and (7) is a slip condition of Beavers–Joseph–Saffman [6,31]. For detailed discussion
on the coupling conditions, refer to [6,31,20,21,32].

3. Boundary integral formulation and regularization

The linearity of the problems makes the boundary integral equation method a natural approach to express solutions of
various boundary value problems. The boundary integral formulation used in this paper provides representation of the flow
in terms of primary variables, i.e., velocity, pressure, stress [28,19], as an alternative approach to the stream function formu-
lation [15,16]. To derive the integral formulation, the governing Eqs. (1) and (2) are solved where the boundary is repre-
sented as a distribution of singular force [34,26]. Introducing a density f of the force distributed along the Stokes
boundary and density g of the force along the Darcy boundary, we write
FS ¼
Z
@XS

dðx� xðsÞÞfðsÞds; GD ¼
Z
@XD

dðx� xðsÞÞgðsÞds;
where s is a boundary parametrization, which we assume to be arclength for simplicity. Using the incompressibility condi-
tions, both the Stokes and Darcy equations can be reduced to Laplace’s equations for pressures. Once calculated, pS and pD are
substituted into (1) and (2) to compute the velocities uS and uD. The resulting expressions can be written as [9,34]
pSðxÞ ¼
Z
@XS

rGðx� xðsÞÞ � fðsÞds; ð8Þ

luSðxÞ ¼
Z
@XS

�Gðx� xðsÞÞfðsÞ þ r½rBðx� xðsÞÞ� � fðsÞf gds; ð9Þ
for Stokes and
pDðxÞ ¼
Z
@XD

rGðx� xðsÞÞ � gðsÞds; ð10Þ

luDðxÞ ¼ �k
Z
@XD

r½rGðx� xðsÞÞ� � gðsÞds; ð11Þ
for Darcy quantities, where G and B are solutions of DGðxÞ ¼ dðxÞ and DBðxÞ ¼ GðxÞ in free-space defined by
GðxÞ ¼ 1
2p ln jxj; BðxÞ ¼ jxj

2

8p ðln jxj � 1Þ; x 2 R2:
The formulation (8)–(11) provides the Stokes flow quantities in terms of a given boundary density f, and the Darcy quantities
in terms of a given density g. Conversely, the unknowns f and g can be computed using boundary conditions on @XS and @XD,
respectively. Given the Stokes velocity for example, f can be found by solving an integral equation that results from evalu-
ating (9) on the boundary, see [28,9,13] for a few examples of these techniques. In the coupled Stokes–Darcy problem, the
system of integral equations for f and g is obtained by substituting (8)–(11) into the boundary and interface conditions (3)–
(7). Once this system is solved, f can be substituted back into (8) and (9) to determine Stokes flow in XS, and g can be substi-
tuted into (10) and (11) to compute the Darcy quantities in XD.

Accurate computation of integrals (8)–(11) appears to be difficult when the evaluation point is near the boundary [3,2],
and special techniques such as [18] can be used. A simple method for computing nearly singular integrals with higher accu-
racy that does not require a dense resolution was developed in [3], and used in the context of Stokes flow in [4,9]. This meth-
od is based on regularizing the integrands, applying a standard quadrature rule, and adding corrections for higher accuracy.
The preconditioner proposed in this paper is based on ideas of the correction method used in [34] (see Section 3.1 for details).

In addition to the accuracy considerations, the mathematical representation (8)–(11) needs special treatment when eval-
uating the integrals on the boundary. The integral representation in (9) is continuous across the boundary @XS, but the inte-
grals in (8), (10), (11) have limiting values different from the value on the boundary. Therefore, certain jump conditions have
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to be incorporated into the solution of a boundary value problem. This issue also appears in conditions (6) and (7), since they
require accurate evaluation of the velocity gradients at the interface.

The jump conditions in all these quantities can be found explicitly if the integrals are written as a superposition of a single
and double layer potentials (see [34] for details):
w0ðxÞ ¼ V0½/�ðxÞ þ N0½w�ðxÞ; x 2 X; ð12Þ
where we have introduced a general quantity w0 to represent the unknowns p and u for both flows, V0½/� and N0½w� are,
respectively the single and the double layer potentials associated with continuous densities / and w,
V0½/�ðxÞ :¼
Z
@X

Gðx� xðsÞÞ/ðsÞds; N0½w�ðxÞ :¼
Z
@X
rGðx� xðsÞÞ � nðsÞwðsÞds: ð13Þ
The single layer potential is continuous across the boundary @X, and the double layer potential has a discontinuity equal to w
across @X [8,22], so to evaluate (12) on the boundary we need to compute
w0ðxÞ ¼ V0½/�ðxÞ þ N0½w�ðxÞ �
1
2

wðxÞ; x 2 @X: ð14Þ
In what follows, we explain briefly the regularization-correction method and present the derivation of the preconditioner we
are proposing.

3.1. Regularization and correction

The main idea of the regularization procedure is to compute the regularized Green’s function from DGdðxÞ ¼ ndðxÞ, where
nd is a smooth function that approximates the delta function and satisfies

R
ndðxÞdx ¼

R
dðxÞdx ¼ 1. We use the smoothing

function from [34]:
ndðxÞ ¼
2d4

pðjxj2 þ d2Þ3
; ð15Þ
where the parameter d is chosen according to accuracy constraints. The corresponding regularized Green’s function is
GdðxÞ ¼
1

4p
lnðjxj2 þ d2Þ � d2

jxj2 þ d2

" #
;

so that Gd ! G as d! 0. This regularization method for Stokes flow was proposed in [9] and further investigated in appli-
cations in [10,13,1]. Fig. 2 shows the Green’s function for different values of regularization parameter d, where d ¼ 0 is
the singular case. As can be seen from the figure, the largest approximation is made near the singularity jxj ¼ 0. Away from
the singularity we have
ðG� GdÞðxÞ ¼ O
d4

jxj4

 !
for d� jxj: ð16Þ
This observation suggests that the approximation can be improved by considering the error near the singularity. When com-
puting (12), regularization introduces an error of the form
Fig. 2. Green’s function for different values of d.
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ðw0 �wdÞðxÞ ¼
Z
@X
ðG� GdÞðx� xðsÞÞ/ðsÞdsþ

Z
@X
rðG� GdÞðx� xðsÞÞ � nðsÞwðsÞds ¼ ðV0 � VdÞ½/�ðxÞ þ ðN0 � NdÞ½w�ðxÞ;
where Vd½/� and Nd½w� are defined as in (13) with G replaced by Gd. The leading error term can be identified by expanding the
smooth functions /ðsÞ and wðsÞ in Taylor series around the point xðs�Þ that is closest to x:
/ðsÞ ¼ /ðs�Þ þ /sðs�Þðs� s�Þ þ Oððs� s�Þ2Þ;
wðsÞ ¼ wðs�Þ þ wsðs�Þðs� s�Þ þ Oððs� s�Þ2Þ;
for s near s�, and keeping only the first term in the expansions,
ðw0 �wdÞ�ðxÞ ¼
Z
@X
ðG� GdÞðx� xðsÞÞds � /ðs�Þ þ

Z
@X
rðG� GdÞðx� xðsÞÞ � nðsÞds � wðs�Þ

¼ ðV0 � VdÞ�½/�ðxÞ þ ðN0 � NdÞ�½w�ðxÞ; ð17Þ
where V�½/� � V ½/ðs�Þ�;N�½w� � N½wðs�Þ�. These terms are then added as corrections to increase the accuracy, so the fluid
quantities are computed as follows:
wðxÞ ¼ wdðxÞ þ ðw0 �wdÞ�ðxÞ ¼ Vd½/�ðxÞ þ Nd½w�ðxÞ þ IGðxÞ � IG
d ðxÞ

h i
/ðs�Þ � 1� IðnÞd ðxÞ

h i
wðs�Þ; ð18Þ
where
IðnÞd ðxÞ ¼ �
Z
@X
rGdðx� xðsÞÞ � nðsÞds; ð19Þ

IGðxÞ ¼
Z
@X

Gðx� xðsÞÞds; ð20Þ

IG
d ðxÞ ¼

Z
@X

Gdðx� xðsÞÞds; ð21Þ
and we have used the identity
Z
@X
rGðx� xðsÞÞ � nðsÞds ¼ �1; x 2 X:
Eq. (18) is valid on the boundary as well, since the jump condition in the double layer is added due to
IðnÞd ðxÞ �
1; x 2 X;

1=2; x 2 @X:

�

The correction is also beneficial when the evaluation point is off the boundary, but near it. Let us point out that the accuracy
can be further improved by using the method developed in [3] for the single and double layer potentials, where corrections
for the regularization and discretization errors were derived. In the remainder of this Section, we give the regularized for-
mulation for Stokes, Darcy, and the coupled system.

3.2. Stokes solution

The regularization-correction technique described above is applied to solve the Stokes–Darcy problem (1)–(7). The details
of the derivation are given in [34]. Here, we summarize the principal equations used to solve the problem. The integrals (8)–
(11) are first modified to be in the form of potentials (12) by using the following decomposition
fðsÞ ¼ f ðnÞðsÞnðsÞ þ f ðsÞðsÞsðsÞ; ð22Þ
of the unknown force distributed along the Stokes boundary, where sðsÞ ¼ ðxsðsÞ; ysðsÞÞ and nðsÞ ¼ ðysðsÞ;�xsðsÞÞ are, respec-
tively the unit tangential and outward normal vectors at arclength s. Substituting this into (8), the Stokes pressure becomes
pSðxÞ ¼ V0½f ðsÞs ðsÞ�ðxÞ þ N0½f ðnÞðsÞ�ðxÞ; ð23Þ
where the single layer was obtained using integration by parts. Similarly, the Stokes velocity can be written in terms of
potentials as [9,34]
uSðxÞ ¼ V0½UðsÞ�ðxÞ þ N0½WðsÞ�ðxÞ; ð24Þ
where
UðsÞ ¼ ðU1;U2ÞðsÞ ¼ �
fðsÞ
2l þ

x� xðsÞ
2l f ðsÞðsÞ

� �
s
; WðsÞ ¼ ðW1;W2ÞðsÞ ¼

x� xðsÞ
2l f ðnÞðsÞ; ð25Þ
with ð�Þs ¼ dð�Þ=ds. Notice that when x 2 @XS, (23) needs to be modified similarly to (14), whereas (24) becomes a single layer
potential since Wðs�Þ ¼ 0 on the boundary.
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In a coupled Stokes–Darcy problem, the interface conditions (6) and (7) require accurate computation of the matrix
ruS ¼
@u
@x

@u
@y

@v
@x

@v
@y

 !
:

Each of the four components can be written in a similar form using the fact that derivatives of potentials can be computed as
potentials. To compute @uS

@y ðxÞ, for example, the first component in (24) is differentiated using
@

@y
V0½/�ðxÞ ¼ V0½ð/ysÞs�ðxÞ � N0½/xs�ðxÞ;

@

@y
N0½w�ðxÞ ¼ V0½ðwxsÞs�ðxÞ þ N0½wys�ðxÞ;
with densities / and w given by (24), to obtain the following representation for x 2 XS:
@uS

@y
ðxÞ ¼ V0 U1ðsÞysðsÞ þW1sðsÞxsðsÞf gs

� �
ðxÞ � N0 U1ðsÞxsðsÞ �W1sðsÞysðsÞf g½ �ðxÞ; ð26Þ
where W1s ¼ dW1=ds. If x 2 @XS, this expression has to be modified to take into consideration the jump conditions arising
from the double layer, see [34,33] for details and results.

We apply the regularization-correction technique (Section 3.1) to compute Stokes flow by evaluating the fluid quantities
(23)–(26) as in (18). Notice that the unknown f is given in integrals in differentiated form. By using integration by parts, the
integrals simplify to the following final expressions where the density f appears readily [34,33]:
pSðxÞ ¼
Z
@XS

rGdðx� xðsÞÞ � fðsÞdsþ DInðxÞf ðnÞðs�Þ þ DIGðxÞf ðsÞs ðs�Þ; ð27Þ

uSðxÞ ¼
Z
@XS

�Gdðx� xðsÞÞ fðsÞ
2l
þrGdðx� xðsÞÞ � fðsÞx� xðsÞ

2l

� �
dsþ DIGðxÞUðs�Þ; ð28Þ

ruSðxÞ ¼
Z
@XS

� fTðsÞ
2l
rGdðx� xðsÞÞ þ ðx� xðsÞÞT

2l
r½rGdðx� xðsÞÞ � fðsÞ�

(

� ðx� xðsÞÞT

2l f ðnÞðsÞnðsÞndðx� xðsÞÞ þ 1
2l ½rGdðx� xðsÞÞ � fðsÞ�I

)
ds

þ DIGðxÞ UTs�WT
s nþ f ðsÞ

2l I
� �

s
ðs�Þ þ DInðxÞ UT nþWT

s sþ
f ðnÞ

2l I
� �

ðs�Þ; ð29Þ
where x 2 @XS; I is the 2	 2 identity matrix, and nd is given by (15). All vectors in (29) are given in the row form, and ð�ÞT

describes the transpose. Each component of (29) is computed similarly to (26). Here we have defined
DInðxÞ ¼ � 1� IðnÞd ðxÞ
h i

; ð30Þ

DIGðxÞ ¼ IGðxÞ � IG
d ðxÞ; ð31Þ
with IðnÞd ; IG, and IG
d given by (19)–(21). These represent correction terms for the single and double layer potentials, respec-

tively. The Stokes pressure pS, for example, is computed as a combination of two potentials, and therefore has corrections
for both. The velocity, on the other hand, has the correction term for the single layer potential alone on the boundary. For
a shorthand notation, we write (27)–(29) as
pSðxÞ ¼ Kp
dcðxÞ � f; uSðxÞ ¼ Ku

dcðxÞ � f;
@uðsÞS

@nS
¼ K0dcðxÞ � f; nS � DS � nS ¼ K00dcðxÞ � f; ð32Þ
where f ¼ ðf ðsÞ; f ðnÞÞT ;DS is the Stokes deformation tensor, and the subscript dc indicates the regularization-correction
procedure.

3.3. Darcy solution

Using a decomposition similar to (22) for the force g along the boundary @XD,
gðsÞ ¼ gðnÞðsÞnðsÞ þ gðsÞðsÞsðsÞ; ð33Þ
the Darcy pressure can be written as
pDðxÞ ¼ V0 gðsÞs ðsÞ
� �

þ N0½gðnÞðsÞ�: ð34Þ
To derive a similar form for the velocity, potentials in Eq. (34) are differentiated using the Darcy Eq. (2) to give [34]
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uDðxÞ ¼ �
j
l

V0 gðsÞs ðsÞsðsÞ � gðnÞs ðsÞnðsÞ
	 


s

� �
� j

l
N0 gðsÞs ðsÞnðsÞ þ gðnÞs ðsÞsðsÞ
� �

: ð35Þ
This is a general formulation to determine the Darcy flow from two force components on the boundary, gðsÞ and gðnÞ. Notice
that only one of these components can be determined from the given boundary and interface conditions. To match the un-
knowns with the conditions, we assume that the Darcy force is normal to the boundary, i.e., gðsÞ � 0.

The method of regularization with corrections is again used for Darcy quantities (34) and (35) by applying the method of
(18). After some algebra that involves simple integration by parts, the following expressions were obtained [34,33]:
pDðxÞ ¼
Z
@XD

rGdðx� xðsÞÞ � nðsÞgðnÞðsÞdsþ DInðxÞgðnÞðs�Þ; ð36Þ

uDðxÞ ¼ �
k
l

Z
@XD

�ndðx� xðsÞÞgðnÞðsÞnðsÞ þ r½rGdðx� xðsÞÞ� � nðsÞgðnÞðsÞ
� �

ds
�

þ DInðxÞ gðnÞs ðsÞsðsÞ
� �

js¼s� � DIGðxÞ gðnÞs ðsÞnðsÞ
� �

sjs¼s�

o
; ð37Þ
where x 2 @XD;DIn;DIG were defined in (30) and (31), and as before, nd is given by (15). Similarly to the Stokes quantities
(32), we write Eqs. (36) and (37) as
pDðxÞ ¼ Hp
dcðxÞ � g; uDðxÞ ¼ Hu

dcðxÞ � g; ð38Þ
where g ¼ gðnÞ.

3.4. Coupled system

In the coupled Stokes–Darcy problem, the expressions for both fluid quantities (27)–(29), (36), (37) are combined to com-
pute the unknown force densities f and g by satisfying the boundary and interface conditions (3)–(7). With the notation
introduced in (32) and (38), enforcing continuity of normal velocity (5) on the interface gives
Ku
dc � nS

	 

ðxÞ � f ¼ �ðHu

dc � nDÞðxÞ � g; x 2 R: ð39Þ
Other conditions in (3)–(7) are imposed similarly. Then solving the coupled problem involves first solving the following lin-
ear system to satisfy the boundary and interface conditions (3)–(7):
ðSDÞF ¼ b; ð40Þ
where
ðSDÞ ¼

Ku
dc


CS

0

Ku
dc � nS

	 

R Hu

dc � nD
	 


jR
Kp

dc � 2lK00dc

	 

R �Hp

dc


R

K0dc �
cffiffiffi
j
p Ku

dc � sS

� �
R

0

0 Hp
dc


CD

0BBBBBBBB@

1CCCCCCCCA
; F ¼

f
g

� �
; b ¼

u0jCS

0
0
0

p0jCD

0BBBBBB@

1CCCCCCA ð41Þ
Observe that the non-symmetric matrix of this linear system is composed of dense blocks (from integrals with different ker-
nels). Numerical tests performed in [34] show the accuracy improvement when using corrections. Another important obser-
vation is the reduction of the condition numbers. Indeed, without corrections, these numbers grow exponentially when
increasing the regularization parameter d [34]. Adding corrections improves the matrix condition numbers and convergence
of the iterative technique. This will be illustrated in a Stokes flow example in a bounded domain, where we also show a sig-
nificant increase of the convergence speed of GMRES using the preconditioner presented in this paper.

4. Preconditioner

As mentioned, the correction process improves the efficiency of the iterative technique to solve the linear system. From
these results and observations, we propose a preconditioner for the system (41) provided by the correction terms. We first
describe the general case of potentials. We write (18) as
wðxÞ ¼ Pdc½/; w� ¼ Pd½/; w� þ P�½/; w� � P�d½/; w�; ð42Þ
where Pd;P
�;P�d represent the integrals, the singular and the regularized parts of corrections in (18), respectively. With this

notation, the preconditioner for Pdc is defined as
eP ¼ ðP�Þ�1
: ð43Þ
Applying this preconditioner to w, we get
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ePPdc½/; w� ¼ ePPd þ ePP� � ePP�d

� �
½/; w� ¼ ðI � DÞ½/; w�; ð44Þ
where D ¼ ePðP�d � PdÞ depends on the regularization parameter d with a property that D½/�;w�� ¼ 0. This preconditioner cor-
responds to (18), which is a superposition of a single and double layers. The same approach will be used to construct the
preconditioner, noted here by ððSDÞ�Þ�1, for the Stokes–Darcy problem (41). The matrix ðSDÞ�, which has the same structure
as ðSDÞ, is obtained by computing the corresponding P� for each block in ðSDÞ. For the sake of simplicity, we present in the
next subsection the preconditioner in the context of Stokes velocity. Then, we show the structure and the elements of the
preconditioner for the coupled system.

4.1. Stokes velocity

Consider Stokes flow in a domain XS where the velocity of the fluid is given on the boundary:
�rpS þ lDuS þ FS ¼ 0; r � uS ¼ 0; x 2 XS; ð45Þ
uS ¼ u0 x 2 @XS: ð46Þ
We use the representation (28) of the solution and evaluate it on the boundary x 2 @XS to get
uSðxÞ ¼ Ku
dc � f ¼ Ku

d ½f ðsÞ; f ðnÞ� þ ðKuÞ�½f ðsÞ; f ðnÞ� � Ku
d

	 
�½f ðsÞ; f ðnÞ�;
where the unknown density components for each operator are shown in square brackets ½ ; �, so that
Ku
d ½f ðsÞ; f ðnÞ� ¼

Z
@XS

�Gdðx� xðsÞÞ fðsÞ
2l
þrGdðx� xðsÞÞ � fðsÞx� xðsÞ

2l

� �
ds;

ðKuÞ�½f ðsÞ; f ðnÞ� ¼ IGðxÞ � sðs�Þ
l

f ðsÞðs�Þ � nðs�Þ
2l

f ðnÞðs�Þ
� �

;

ðKu
d Þ
�½f ðsÞ; f ðnÞ� ¼ IG

d ðxÞ �
sðs�Þ
l

f ðsÞðs�Þ � nðs�Þ
2l

f ðnÞðs�Þ
� �

;

with IG; IG
d given by (20) and (21). Without using a preconditioner, enforcing condition (46) results in solving
Ku
dcf ¼ u0; ð47Þ
for the unknown forces f ¼ ðf ðsÞ; f ðnÞÞT . On the other hand, to improve the convergence properties of the iterative technique,
we solve Eq. (46) as
eKKu

dcf ¼ eKu0; ð48Þ
with the preconditioner defined as
eK ¼ ððKuÞ�Þ�1 ¼
DðsÞu DðnÞu

DðsÞv DðnÞv

 !�1

: ð49Þ
Each of the four blocks of the matrix ðKuÞ� is a diagonal matrix with the elements equal to the coefficients of the forces in the
corresponding component of velocity u ¼ ðu;vÞ:
DðsÞu ¼ �
s1ðs�Þ

l
IGðxÞ; DðnÞu ¼ �

n1ðs�Þ
2l

IGðxÞ;

DðsÞv ¼ �
s2ðs�Þ

l
IGðxÞ; DðnÞv ¼ �

n2ðs�Þ
2l

IGðxÞ;
s ¼ ðs1; s2Þ;n ¼ ðn1;n2Þ, and x ¼ xðs�Þ. Due to the block-diagonal structure of ðKuÞ�, the inverse can be computed easily. In the
Numerical results section, we present experiments that show improvement of GMRES for this problem when solving the pre-
conditioned system (48) instead of (47).

4.2. Coupled system

As mentioned, the same method is applied to derive the preconditioner for the coupled Stokes–Darcy system (41). The
matrix ðSDÞ� based on the singular part of corrections has the same block structure as (41):
ðSDÞ� ¼

ðKuÞ� 0
Ku � nSð Þ� Hu � nDð Þ�

ðKp � 2lK00Þ� �ðHpÞ�

ðK0Þ� � cffiffiffi
j
p Ku � sSð Þ� 0

0 ðHpÞ�

0BBBBBB@

1CCCCCCA; ð50Þ
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where
ðKpÞ�½f ðsÞ; f ðnÞ� ¼ IGðxÞf ðsÞs ðs�Þ � f ðnÞðs�Þ; ð51Þ

ðKuÞ�½f ðsÞ; f ðnÞ� ¼ IGðxÞUðs�Þ �Wðs�Þ ¼ IGðxÞ � fðs�Þ
2l
� xsðs�Þ

2l
f ðsÞðs�Þ

� �
; ð52Þ

ðK0Þ�½f ðsÞ; f ðnÞ� ¼ sðs�Þ � IGðxÞM1ðs�Þ �M2ðs�Þ
h i

� nðs�Þ; ð53Þ

ðK00Þ�½f ðsÞ; f ðnÞ� ¼ nðs�Þ � 1
2

IGðxÞ M1 þMT
1

� �
ðs�Þ � M2 þMT

2

� �
ðs�Þ

h i
� nðs�Þ; ð54Þ

ðHpÞ�½gðnÞ� ¼ �gðnÞðs�Þ; ð55Þ

ðHuÞ�½gðnÞ� ¼ � k
l

IGðxÞ �gðnÞs ðsÞnðsÞ
� �

sjs¼s� � gðnÞs ðsÞsðsÞ
� �

js¼s�

n o
; ð56Þ
where IGðxÞ is defined in (20), and IGM1 �M2 represents the singular part of corrections for the matrix ruS, with
M1ðsÞ ¼
d
ds

UTs�WT
s nþ f ðsÞ

2l
I

� �
ðsÞ; M2ðsÞ ¼ UT nþWT

s sþ
f ðnÞ

2l
I

� �
ðsÞ;
where I is the identity matrix and using the notation of (25). Then the coefficients of f ðsÞ; f ðnÞ, and gðnÞ form the elements of
ðSDÞ�.
5. Numerical results

5.1. Discretization

The numerical accuracy of solutions depends on the regularization parameter d and the discretization quadrature. The
interval 0 6 s 6 L is discretized by i ¼ 1; . . . ;N grid points with spacing Dsi. Once the kernels are regularized and all inte-
grands are smooth functions, we use the trapezoidal rule
Z L

0
Kdðx� xðsÞÞf ðsÞds �

XN

i¼1

Kdðx� xðsiÞÞf ðsiÞDsi;
to approximate the integrals in (27)–(29), (36), (37), including the integrals for IðnÞd ðxÞ and IG
d ðxÞ in (19) and (21). For accuracy

estimates and improvements, see [3]. Higher-order integration techniques such as Gaussian quadrature could be used. How-
ever, it does not change the dependence of solutions on regularization when d is large, and better accuracy is achieved only
for smaller values of d (see [34]). To compute IGðxÞ with better accuracy than trapezoidal rule, we use Gaussian quadrature.

With this discretization, the block matrices of system (50) have diagonal elements of the form
ðKpÞ�ii½f ðsÞ; f ðnÞ� ¼ IGðxiÞf ðsÞs ðsiÞ � f ðnÞðsiÞ;
for each point xi ¼ xðsiÞ on the boundary. The elements of ðKuÞ�; ðK0Þ�; ðK00Þ�; ðHpÞ�, and ðHuÞ� are computed similarly. Notice
that terms of the form cYðsiÞ, with Y representing f ðsÞ; f ðnÞ, or gðnÞ, will form the diagonal elements of the particular block ma-
trix in (50). If the term has the form cYsðsiÞ or cYssðsiÞ, then a few off-diagonal elements become non-zero, depending on the
particular approximation of Ys and Yss used. Therefore, the matrix ðSDÞ� in (50) will have a block-diagonal or near diagonal
structure and can be solved efficiently.

5.2. Cubic splines

To ensure smoothness, the boundary and the force distributions are parametrized using cubic splines:
x ¼ ðx; yÞ ¼ ak þ bkða� akÞ þ ckða� akÞ2 þ dkða� akÞ3;
YðaÞ ¼ ak þ bkða� akÞ þ ckða� akÞ2 þ dkða� akÞ3;
for ak 6 a 6 akþ1; k ¼ 1; . . . ;N, with periodic boundary conditions, Y representing f ðsÞ; f ðnÞ, or gðnÞ. The arclength s ¼ sðaÞ is a
smooth map with ds=da ¼ jdx=daj, so that dð�Þ

ds ¼
dð�Þ
da =

dx
da

 . The unit tangent and normal vectors are
sðaÞ ¼ TðaÞ=jTðaÞj; nðaÞ ¼ NðaÞ=jNðaÞj, where TðaÞ ¼ ðx0ðaÞ; y0ðaÞÞ and NðaÞ ¼ ðy0ðaÞ;�x0ðaÞÞ. With this parametrization, we
rewrite the integrals with respect to a.

Using this representation of the unknown forces, the derivatives are approximated by the spline coefficients as
Yi ¼ ai; Ysi ¼ bi;Yssi ¼ 2ci. Recall that the number of unknowns reduces to ai by using b ¼ Ba and c ¼ Ca with matrices B
and C defined by the periodic spline conditions. Therefore, when constructing the matrix ðSDÞ� as in (50), Eqs. (52) and
(55), for example, will form diagonal blocks, whereas equations such as (51), (53), (54) and (56) include terms with spline
coefficients bi and ci. These will form near diagonal block matrices with coefficients of ai. Other approximations of the



Table 1
Stokes problem: number of GMRES iterations.

N No corrections, no preconditioner Corrected, no preconditioner Corrected, no preconditioner

168 242 78 24
328 456 110 31
648 950 152 36
1288 2008 212 42
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derivatives are possible, and we later compare results using splines and finite differences for the coefficients of Ys and Yss to
compute the matrix ðSDÞ�.

5.3. Stokes problem

In Section 4.1, we have introduced the preconditioner for the Stokes problem. Here we illustrate the efficiency of GMRES
when applying this preconditioner. We solve the following problem: compute Stokes flow in XS ¼ ð0;1Þ 	 ð1;2Þ using the
boundary condition
uS ¼ ð0; xðx� 1ÞÞ; x 2 @XS:
We assume viscosity l ¼ 1 and discretize the boundary using N points. The systems have dimensions 2N 	 2N. Table 1 com-
pares how the number of GMRES iterations grows with the matrix size, where the tolerance was kept fixed at 10�7. We ob-
serve that the number of iterations using the peconditioner is significantly reduced, and although still growing as the matrix
size increases, the growth rate is much slower compared with the matrix without preconditioner. Similar results were ob-
tained in the Darcy framework, which demonstrates that this preconditioner could be applied to Stokes and Darcy problems
separately.

5.4. Coupled problem

The matrix in the previous example corresponds to Ku
dc in the system (41). Although the Stokes problem alone is simpler

to analyze, we expect the same kind of improvement of GMRES for the coupled system (41). Consider Darcy flow in
0 6 x 6 1; 0 6 y 6 1 and Stokes flow in 0 6 x 6 1;1 6 y 6 2, satisfying continuity of normal components of velocity and nor-
mal stress and the no-slip condition ðc ¼ 1Þ along the interface y ¼ 1. The case with a non-zero slip will give similar results.
The exact solution is
pD ¼
l
k

xð1� xÞðy� 1Þ þ ðy� 1Þ3

3

" #
þ 2l;

uD ¼ ðð2x� 1Þðy� 1Þ; xðx� 1Þ � ðy� 1Þ2Þ;
pS ¼ 2ly;
uS ¼ ð0; xðx� 1ÞÞ:
We use this solution to assign the velocity along the outer Stokes boundary and pressure along the outer Darcy boundary.
The numerical solution of this problem was presented in [34].

5.4.1. Dependence on the discretization and regularization parameters
In this section, we fix viscosity l ¼ 1, permeability k ¼ 1, and analyze the convergence properties of the iterative scheme

for different discretization Ds and regularization d values. Each boundary is discretized using N points. Then the matrix that
results from imposing the boundary conditions has dimensions 3N 	 3N, since there are 2N unknowns for Stokes forces and
N unknowns for Darcy. It should be noted here that while using regularization d=Ds for Stokes, we use a higher regularization
d=Dsþ 2 for Darcy, since the kernels in Darcy integrals are more singular and thus require stronger smoothing in practice
[34]. The system is solved using restarted GMRES [30] with the restart value denoted here by N_Krylov and a given tolerance
for the residual.

We first solve the system (41) without preconditioner. Figs. 3 and 4 show the eigenvalues of the matrix for N ¼ 328 points
on each boundary, so that Da ¼ Ds � 0:0122. The optimal regularization d=Ds ¼ 1 for Stokes and d=Dsþ 2 for Darcy was used.
The system is not well-conditioned and most of the eigenvalues being near zero is reflected in slow convergence of the iter-
ative method (Table 2).

Table 2 shows condition numbers of matrices and convergence rates of GMRES with tolerance fixed at 10�9. The notation
cond # S (respectively cond # D) indicates the condition numbers for Stokes part of the system solved with boundary con-
ditions (3), (6) and (7) (respectively Darcy part with the boundary conditions (4) and (5)). This test shows that although the
two problems separately do not have good condition numbers, this conditioning becomes significantly worse when coupling
them. We roughly double the number of points on the boundary each time, also decreasing regularization while keeping the



Fig. 3. Coupled system: matrix without preconditioner. Right: close-up of the smallest eigenvalues.

Fig. 4. Coupled system: matrix without preconditioner. Right: close-up of the smallest eigenvalues.

Table 2
Coupled system: convergence for various grid sizes.

Without preconditioner With preconditioner

N cond # S cond # D cond # S–D N_Krylov GMRES iter N cond # S–D N_Krylov GMRES iter

168 1.96 	 102 1.78 	 103 1.18 	 105 200 5000+ 168 2.43 	 102 50 5000+
250 226 100 54

328 3.87 	 102 3.88 	 103 4.61 	 105 350 5000+ 328 6.56	102 100 66
500 351

648 7.68 	 102 8.18 	 103 1.82 	 106 500 5000+ 648 1.84 	 103 500 83
1000 550

1288 1.53 	 103 1.72 	 104 7.20 	 106 3500 888 1288 5.23 	 103 1000 102
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ratio d=Ds fixed. As we can observe, refining the boundary discretization impairs these numbers, so that condition numbers
grow roughly quadratically. For each N, there is a considerable reduction in the condition numbers when using precondition-
ers. Comparing the cond # S–D and N_Krylov columns in the corresponding tables, it is obvious that the preconditioned ma-
trix not only converges much faster than the original one, but does so with a smaller restart value N_Krylov, which makes the
algorithm even more robust. For instance, for the 504	 504 matrix ðN ¼ 168Þ, the algorithm without preconditioner con-
verges in 226 iterations, but N_Krylov of at least 250 is required for convergence. In the preconditioned case however,
the algorithm converges in only 54 iterations. Doubling the matrix dimension results in 351 iterations with a roughly dou-
bled N_Krylov in the original calculations, whereas the preconditioned system converges in only 66 iterations, which was
possible to obtain without increasing the Krylov subspace dimension.

The eigenvalues of the preconditioned matrix, shown for the case N ¼ 328 in Fig. 5, have a smaller spectrum than the
eigenvalues of the original matrix (Fig. 4), since applying the preconditioner seems to keep the largest eigenvalue bounded,
and the smaller eigenvalues are not as near zero. Table 3 shows the largest and the smallest eigenvalues of the matrices for



Fig. 5. Coupled system: matrix with preconditioner. Right: close-up of the smallest eigenvalues.

Table 3
Coupled system: eigenvalue range for various grid sizes.

N Without preconditioner With preconditioner

cond # jkminj jkmaxj cond # jkminj jkmaxj

168 1:18	 105 0.0033 13.7122 2:43	 102 0.0145 1.4544

328 4:61	 105 0.0017 19.1950 6:56	 102 0.0074 1.4543

648 1:82	 106 0.0008 26.9959 1:84	 103 0.0038 1.4543

1288 7:20	 106 0.0004 38.0665 5:23	 103 0.0019 1.4542
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different N. In the preconditioned case, the largest eigenvalue remains fixed. For the original matrix, the eigenvalue is grow-
ing with the matrix size. The smallest eigenvalue, on the other hand, is being halved each time we double the number of
points in both cases. However, without using the preconditioner, they are closer to zero.

The next numerical experiments demonstrate the effect of regularization on convergence properties. We keep the discret-
ization fixed at N ¼ 328, and vary the regularization by changing the ratio d=Ds. Table 4 shows condition numbers and the
eigenvalue range of the matrix system. If we do not use preconditioner, for all values of d, the condition numbers are of the
order of 105. Applying the preconditioner reduces the condition numbers significantly. An important observation is that the
largest eigenvalue in magnitude is growing for larger d without the preconditioner, but in the preconditioned case it remains
bounded. The smallest eigenvalue jkminj is closer to zero without preconditioner. We observe that the number of iterations
decreases when increasing the regularization parameter, while the eigenvalues increase in magnitude, see the jkminj and
jkmaxj columns in Table 4.
5.4.2. Dependence on the physical parameters
In this section, we investigate how the convergence of the iterative method depends on values of the fluid viscosity l and

the permeability of the porous medium k, which can differ by orders of magnitude in practice. This results in different blocks
of system (41) having different scales, which may affect the convergence. We investigate this by fixing l, and varying k. We
use the same geometry and same example as before, N ¼ 328; d=Ds ¼ 1 for Stokes and d=Dsþ 2 for Darcy, GMRES with a tol-
erance 10�5, N_Krylov = 500 without preconditioner, and N_Krylov = 100 with preconditioner. Table 5 shows results with
Table 4
Coupled system: convergence for various regularization parameters.

d=Ds Without preconditioner With preconditioner

cond # jkminj jkmaxj GMRES iter cond # jkminj jkmax j GMRES iter

1.0 4:61	 105 0.0017 19.1950 351 6:56	 102 0.0074 1.4543 66

1.5 3:73	 105 0.0023 20.7322 324 4:63	 102 0.0117 1.4544 59

2.0 3:21	 105 0.0031 22.1642 307 4:20	 102 0.0156 1.4544 54

2.5 2:90	 105 0.0038 23.5098 292 3:85	 102 0.0195 1.4544 50

3.0 2:69	 105 0.0046 24.7832 283 3:57	 102 0.0235 1.4544 48

3.5 2:53	 105 0.0053 25.9952 273 3:33	 102 0.0274 1.4544 45

4.0 2:42	 105 0.0061 27.1542 267 3:12	 102 0.0314 1.4544 44



Table 5
Coupled system: convergence rates for different physical parameters.

l k Without preconditioner With preconditioner

cond # GMRES iter cond # GMRES iter

1 1 4:61	 105 259 6:56	 102 40

10�1 4:61	 104 259 5:47	 102 41

10�2 4:62	 103 264 3:08	 102 42

10�4 1:26	 104 231 3:63	 103 51

10�2 1 5:08	 105 192 6:56	 102 26

10�1 5:10	 104 196 5:47	 102 27

10�2 5:40	 103 202 3:08	 102 29

10�4 3:93	 103 198 3:63	 103 39

102 1 4:62	 105 316 6:56	 102 53

10�1 6:61	 104 312 5:47	 102 53

10�2 6:61	 104 316 3:08	 102 55

10�4 1:26	 106 281 3:63	 103 64
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l ¼ 1;10�2, and 102, and varying k. Although the number of iterations is still dependent on the parameter values, we again
observe that the preconditioner improves the convergence of GMRES in each case.

5.5. Coupled problem on a larger domain

The geometry in the preceding example is represented by unit squares for both Stokes and Darcy flows. Here we repeat
the test of Section 5.4.1 on a bigger rectangular geometry: 0 6 x 6 2:5;�1 6 y 6 1 for Darcy and 0 6 x 6 2:5;1 6 y 6 3 for
Stokes domains. Table 6 shows the condition numbers and the number of GMRES iterations with N_Krylov = 2000 and tol-
erance fixed at 10�9, with N0 ¼ 378 points along the boundary of each domain. As before, we see a reduction in matrix con-
dition numbers of at least two orders of magnitude, and convergence is significantly improved. Notice that the speed-up
between iteration numbers grows from 4 in the first to 8 in the last case.

5.6. Another geometry

In this section, we present an example where the interface between Stokes and Darcy domains is not a straight line. The
geometry is given in Fig. 6, where �XS ¼ ½�1:5;1:5� 	 ½�1:5;1:5� nXD, and the interface R is parametrized by
x ¼ 0:7ðcosðtÞ þ 0:4 cosð2tÞÞ � 0:2; y ¼ 0:7 sinðtÞ;0 6 t 6 2p. Along the outer Stokes boundary CS, we impose
uS ¼ ð0;4� x2Þ as a boundary condition. Parameter values l ¼ 1; k ¼ 1; c ¼ 1, regularization d=Ds ¼ 1 for Stokes and
d=Dsþ 2 for Darcy, and tolerance = 10�9 for GMRES were used in the calculations. The matrix condition numbers and GMRES
iteration numbers are shown in Table 7. By N0 we indicate the case with 220 points along the interface R and 504 points
along the outer Stokes boundary CS.

The precoditioner improved the iteration numbers significantly. Indeed, the system for 4N0 does not converge to the de-
sired tolerance in 5000 iterations, whereas with preconditioner it only takes 390 iterations. We modified N_Krylov = 5000
and tolerance 10�5 (last row in Table 7). In this case, the tolerance was attained after 2158 iterations, and only 244 with
preconditioner.

5.7. Finite difference approximation of derivatives

All the results above use coefficients of cubic splines to approximate the derivatives of forces. This results in a precondi-
tioner with blocks that have a few non-zero off-diagonal elements. Alternatively, a different approximation for the deriva-
tives can be used to reduce the block-bandwidth of the preconditioner. In particular, we use second-order finite differences
Table 6
Coupled system: convergence for various grid sizes.

N Without preconditioner With preconditioner

cond # GMRES iter cond # GMRES iter

N0 1:19	 105 422 5:85	 102 106

2N0 4:85	 105 695 1:55	 103 123

4N0 1:95	 106 1188 4:53	 103 136



Fig. 6. Geometry of the problem.

Table 7
Coupled system: convergence for various grid sizes.

N Without preconditioner With preconditioner

cond # GMRES iter cond # GMRES iter

N0 2:57	 109 676 3:17	 107 211

2N0 6:59	 1011 2000 3:88	 109 286

4N0 5:18	 1013 5000++ 1:50	 1011 390

4N0
*** 2158 *** 244

Table 8
Convergence rates: preconditioners computed with cubic splines vs. finite differences.

k Cubic splines Finite diff. Block-diag. with splines Without preconditioner

1 40 40 123 259

10�1 41 41 124 259

10�2 42 42 126 264

10�4 51 51 83 231
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for fs; fss; gs, and gss. This way, the blocks of the matrix ðSDÞ� formed from the coefficients of f and g in (51)–(56) have at most a
tridiagonal structure with periodic conditions, and computing the preconditioner becomes cheaper. We repeat the test of
Section 5.4, where we fix the viscosity l ¼ 1 and vary the permeability, comparing results for the two preconditioners. Again,
tolerance = 10�5 and N_Krylov = 100. As can be seen from Table 8, the GMRES iteration numbers with the preconditioned
matrix using cubic splines (which were shown also in Table 5) and using finite differences are identical. This indicates that
to construct the preconditioner, any approximation of the derivatives of forces could be used, and should be chosen so that
the resulting preconditioner is easier to solve. As a comparison, we also modify the original preconditioner obtained with
cubic splines to have a block-diagonal structure. This preconditioner has the simplest structure and therefore is cheapest
to solve. We compute it by truncating the off-diagonal elements of the original preconditioner. The results are shown in
the fourth column of Table 8. It can be seen that applying this simple preconditioner is already beneficial, it reduces the num-
ber of iterations by a factor of two.
6. Conclusions

In this paper, we have introduced a preconditioner to efficiently solve the coupled Stokes–Darcy integral formulation. This
boundary integral formulation is obtained through a regularization-correction method. We derived the preconditioner based
on the observation that the correction procedure improves condition numbers of the system. Numerical results validate this
approach and have shown significant improvement of the Krylov subspace method. Moreover, this preconditioner can be
used in systems of integral equations involving the same kind of Green’s function, as we showed for a Stokes flow problem.
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We also believe that this preconditioner could be extended to integrals with the singular Green’s function (without regular-
ization-correction).

The preconditioner proposed in this work can be solved efficiently since it has a small bandwidth. Indeed, the blocks of
this matrix are either diagonal or have only a few non-zero off-diagonal elements obtained because of the approximation of
the derivatives on the densities. The approach used in this work to approximate these derivatives is cubic splines. However,
to reduce the number of off-diagonal elements we also performed numerical differentiation using finite differences. In both
cases, we observe that the preconditioner has the same effect on the iterative method.
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